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ABSTRACT

Aim Analysing how species niches shift between native and introduced ranges is a
powerful tool for understanding the determinants of species distributions and for
anticipating range expansions by invasive species. Most studies only consider the
climatic niche, by correlating widely available presence-only data with regional
climate. However, habitat characteristics and disturbance also shape species niches,
thereby potentially confounding shifts attributed only to differences in climate.
Here we used presence and abundance data for Oxalis pes-caprae, a species native to
South Africa and invading areas globally, to understand how niche shifts may be
influenced by disturbance at habitat and landscape scales in addition to climate.

Locality Mediterranean climate areas world-wide.

Methods We used available presence-only data and also conducted extensive
surveys of the abundance of Oxalis (c. 11,000 plots) across different habitats in
South Africa and in the introduced range in the Mediterranean Basin. We extended
principal component analysis methods for measuring niche shifts by using Bayesian
generalized linear models to identify climatic and disturbance niche shifts.

Results We found a large climatic niche expansion towards stronger seasonality
and lower temperature in the introduced range, but this expansion was greatly
reduced when considering only conditions available in both ranges. Oxalis occu-
pied more natural landscapes in the native range that remained unoccupied in the
introduced range (‘niche unfilling’). In contrast to the similar abundances in
natural and disturbed habitats in its native range, Oxalis was more abundant in
disturbed habitats in the introduced range.

Conclusions The large climatic niche expansion most likely reflects significant
plasticity of Oxalis rather than rapid evolution. Furthermore, the unfilling of its
disturbance niche in the introduced range suggests high potential for further inva-
sion of natural areas. Together, these findings suggest that the potential for future
spread of invasive species may be underestimated by approaches that characterize
species niches based only on climate or partial information about their
distributions.
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INTRODUCTION

Understanding the determinants of invasive species distribu-

tions is crucial for effective management. A common approach

is to make predictions about the potential introduced range

using the data about the species’ distribution in its native or

introduced range (Peterson et al., 2003; Thuiller et al., 2005).

This approach relies on the assumption that species have similar

niche characteristics in native and introduced ranges (i.e. niche

conservatism) (Peterson et al., 2003; Alexander & Edwards,

2010). Recent studies have questioned this assumption for

plants (Broennimann et al., 2007; Gallagher et al., 2010), insects
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(Fitzpatrick et al., 2007; Medley, 2010), amphibians (Urban

et al., 2007) and fish (Lauzeral et al., 2011) by highlighting the

potential importance of rapid evolution and altered biotic inter-

actions during the invasion process. Nevertheless, species may

only have access to a subset of the potentially suitable climatic

conditions in their native ranges. Consequently, when analyses

of climatic niche shifts are limited to those climates available in

both native and introduced ranges (i.e. analogous conditions)

there appear to be fewer real niche shifts (Petitpierre et al.,

2012).

Knowing whether climatic niches are similar in the native and

introduced range is extremely important for predicting species

occurrences in new areas and in response to climate change

(Alexander & Edwards, 2010). For example, observed shifts into

novel climates in the introduced range that are not occupied in

the native range (i.e. expansion) suggest that rapid evolution

may have expanded a species’ climatic tolerances. Conversely,

narrower climatic envelopes observed in the introduced range

than in the native range (i.e. unfilling) suggest the importance of

dispersal limitation, lag phases and/or evolutionary bottlenecks

associated with introduction processes (Medley, 2010; Guisan

et al., 2014). Furthermore, some processes, such as changes in

biotic interactions between the ranges, may lead to either niche

expansion or unfilling. Quantifying the prevalence of niche

unfilling in the invaded range is critically important because it

suggests the likelihood of further spread over time in the intro-

duced range.

Niche conservatism in invasive species is typically tested using

broad climatic niches, despite the fact that similar ideas may be

applied to other aspects of a species’ niche, such as disturbance

regimes or habitat characteristics (Wiens et al., 2010; Guisan

et al., 2014). For example, many invasive plant species are

favoured by the nutrient-rich conditions provided by high levels

of disturbance (Hobbs & Huenneke, 1992). It has been sug-

gested that non-native species tend to colonize disturbed habi-

tats in the early stages of the invasion process, and may then

expand to more natural conditions as the invasion unfolds

(Dietz & Edwards, 2006). The association of a species with dis-

turbance (i.e. disturbance niche) may be related to local gradi-

ents from natural to ruderal habitats (Vilà et al., 2007), and also

human alterations at the landscape scale (González-Moreno

et al., 2013). Although theory suggests a shift towards more

altered habitats and landscapes in the introduced range, the

roles of habitat and disturbance in mediating niche shifts have

received much less attention than climatic niche shifts. None-

theless, it is important to understand shifts in a species’ disturb-

ance niche because they may contribute to the time lags that

often characterize invasions (Geerts et al., 2013).

In this study we used Oxalis pes-caprae L., a geophyte native to

South Africa which has invaded Mediterranean climate areas

globally, to test for shifts in both climatic and disturbance niches

between native and introduced areas. First, we quantified the

climatic niche conservatism of the species using global data (30′
resolution) and ordination methods. Second, we examined the

climatic and disturbance niches using data on the abundance of

the species from extensive field sampling (c. 11,000 plots; 30″

resolution) throughout the native range in South Africa and

across large parts of the introduced range in the Mediterranean

Basin. We hypothesized that different niche shifts may be appar-

ent when considering abundance compared with the widely

used occurrence data. We used a combination of principal com-

ponents analysis (PCA) methods and generalized linear models

(GLMs) within a Bayesian framework to provide a more detailed

test of how the species’ climate and disturbance niches shift in

the introduced region. We interpret the results to provide guide-

lines for more accurate modelling of invasive species and con-

sider implications for the potential invasion of Oxalis into

natural areas in the long term.

METHODS

Study species

Oxalis pes-caprae L. (hereafter Oxalis) is a small geophyte from

South Africa which has invaded many Mediterranean areas

globally (Weber, 2003). It was introduced to the Mediterranean

Basin in 1796, and reached mainland Spain by 1825 and the

Balearic Islands by 1870 (D’Austria, 1884). Despite its long

history in the Mediterranean Basin, in Spain it only covers 46%

of its potential distribution (Gassó et al., 2012). It generally

flowers from late autumn to early summer and is heterostylic

with three flower morphs (Castro et al., 2007). In its native range

all three floral morphs occur and the species reproduces both

sexually and asexually (Ornduff, 1987), while in the introduced

range only one morph is dominant and the principal means of

reproduction is via vegetative bulbils (Vilà et al., 2006; Castro

et al., 2007).

Global climatic niche shift analyses

Plant dataset

We collected all available presence-only data for Oxalis in the

Global Biodiversity Information Facility (1818 plots; Fig. 1); this

provided good coverage for the native range (South Africa) and

a large part of the introduced range (North America, Europe

and Australia). We kept those plots with at least 0.001° positional

accuracy and excluded isolated locations outside its known dis-

tribution (most likely botanic gardens). In addition, we added

1852 occurrence plots from our surveys in South Africa and

Europe (see below).

Climate data

We extracted 19 bioclimatic variables from WorldClim

(Hijmans et al., 2005) at 30′ resolution (c. 50 km). We included

as explanatory variables only the minimum combination of cli-

matic variables identified as not collinear within each range

(Table S1 in Appendix S1 in the Supporting Information): mean

annual temperature, temperature seasonality, precipitation sea-

sonality, winter precipitation (coldest quarter), minimum
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temperature of the coldest month (minimum temperature) and

temperature of the driest quarter.

Statistical analyses

We identified climatic niche shifts for Oxalis between native and

introduced ranges within the whole Mediterranean biome using

the global occurrence data and the climatic data at 30′ resolu-

tion. To avoid pseudo-replication we included only one plot for

each 30′ × 30′ grid cell (342 plots). Our analysis of niche shifts

followed the three-step approach used by Broennimann et al.,

(2012) and Petitpierre et al., (2012). First, we delimited the

Mediterranean biome (Olson et al., 2001) for both ranges and

extracted all climate data at 30′ resolution. Based on these data,

we performed a PCA and used its first two axes to characterize

the environmental space within which we could compare the

native and introduced niches (Fig. S1 in Appendix S1). We then

divided this environmental space into a grid of 100 × 100 cells,

as in Broennimann et al. (2012). Second, we used a kernel

density function to convert occurrences of Oxalis and the avail-

able climates in each range into densities in order to correct for

sampling bias and environmental availability, respectively, and

to ensure that the results were independent of the grid resolu-

tion (Broennimann et al., 2012). Third, we calculated three

indices of niche shifts: unfilling, stability and expansion

(Petitpierre et al., 2012) considering either the common envi-

ronmental space for native and introduced ranges or the whole

environmental space. Unfilling is defined as the proportion of

the densities in the native range located in different conditions

from the introduced range, stability is the proportion of the

densities in the introduced range that overlap with the native

range, and expansion is the proportion of the densities in the

introduced range located in different conditions from the native

range. We calculated each index using the 75th percentile of the

available environmental conditions in each range. This

approach removes the marginal environments and avoids bias

due to artefacts of the density function (Petitpierre et al., 2012).

Finally, we calculated the median of the distribution density and

the median of the available climatic space in both ranges in

order to assess the overall direction of the shifts.

Mediterranean Basin niche shift analyses

Plant dataset

We obtained local abundance data in the introduced range from

two different datasets in the Mediterranean Basin: from Gimeno

et al. (2006), conducted on two Balearic islands (Mallorca and

Menorca) and two adjacent coastal regions of mainland Spain

(Valencia and Murcia), and from Affre et al. (2010), conducted

on three Mediterranean islands (Crete, Sardinia and Corsica).

The two datasets were originally sampled using similar

protocols.

1. Five 10 km × 10 km Universal Transverse Mercator (UTM)

cells were randomly chosen in each region.

2. Within each UTM cell 100 plots were sampled. In Gimeno

et al. (2006) exact survey plots were selected by stopping every

1 km along several communication networks (from main roads

to paths). In contrast, in Affre et al. (2010) the 100 plots were

randomly located (GPS accuracy < 10 m). Accessibility prob-

lems during sampling finally lead to fewer than 100 plots per

block, so the final dataset included 1716 plots from Gimeno

et al. (2006) and 1355 from Affre et al. (2010).

3. In each plot, dominant habitats falling within a 50-m radius

were classified according to ten categories that varied in their

level of human influence (i.e. disturbance at the local scale) –

agriculture, coastal, forest, grassland, river, transport network

(road and railway margins), rocky, ruderal (disturbed open

areas), shrubland and urban (built areas) – resulting in one or

more data entries for each sampled plot.

For all habitats surveyed at each plot, Oxalis cover was cat-

egorized using a six-point index based on percentage cover:

Figure 1 Oxalis pes-caprae plots used in
the analyses. The upper part of the figure
shows the localities of presence-only data
used to test the global climatic niche shift.
The panels in the lower half show the
localities of plots where abundance data
were collected in the introduced range
(Mediterranean Basin, left) and in the
native range (South Africa, right).
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dominant (≥ 75%) = 5, abundant (75–50%) = 4, frequent (50–

25%) = 3, occasional (25–5%) = 2, rare (≤ 5–> 0%) = 1 and

absent (0%) = 0.

To characterize the distribution of Oxalis in its native range

we followed the protocol by Gimeno et al. (2006). We sampled

13 10 km × 10 km UTM cells (1033 plots) covering the whole

gradient of climatic conditions where Oxalis occurs (as indi-

cated by experts and herbarium data). We also considered the

gradient of human influence by placing the grids close to urban

nuclei of different sizes.

Climate and landscape data

As for the global analysis we extracted 19 bioclimatic variables

from WorldClim for all plots, but at 30″ resolution (c. 1 km). To

avoid collinearity problems in the regression analyses we

selected only poorly correlated variables (r < 0.7): mean annual

temperature, temperature seasonality, precipitation seasonality

and winter precipitation.

To characterize human influence at the landscape scale for

each plot we obtained the following land-cover variables (per-

centage of urban, agricultural and natural land covers),

minimum distance to roads and human footprint index. Land-

cover data were obtained from the European CORINE land-

cover map (2006, Crete from 2000) and the South African

NLC2009. We resampled raster maps to 100-m resolution

(minimum resolution of the CORINE map) and calculated

land-cover percentage at three buffer distances from each plot:

250, 500 and 1000 m. Road network maps were obtained from

the global community-owned project OpenStreetMap. This

dataset is highly accurate compared with corporate datasets

(Neis et al., 2011) and we assume a similar error for all study

areas. Finally, index data on the human footprint were extracted

from the Last of the Wild Project at 1-km resolution (WCS &

CIESIN, 2005). Based on collinearity analyses we selected agri-

cultural and urban land covers, distance to roads and human

footprint variables (Table S1 in Appendix S1). We identified

1000 m as the most appropriate buffer distance based on

Pearson’s correlations between the abundance of Oxalis and

land-cover variables across distances (Table S2 in Appendix S1).

All data extraction and manipulation was done using open-

source GIS software (qgis, grass and postgis).

Statistical analyses

We used ordination (PCA) and GLMs to test climate and dis-

turbance niche conservatism of Oxalis between the native range

(4862 data entries considering the habitats found in each of the

1033 plots) and across a large part of the introduced range in the

Mediterranean Basin (6009 data entries corresponding to 3071

plots). Ordination allowed for a comparison of species niches

for each range in a space defined by axes summarizing several

variables. We used GLMs to compare the changes between

ranges in the association of Oxalis abundance with each variable

and in the difference in local habitat suitability.

Ordination method

We used the same PCA approach as in the global analysis to

quantify climatic and disturbance niche shifts between the

introduced range in the Mediterranean Basin and the native

range in South Africa. We compared the niches for both ranges

using all climatic (30″ resolution) and disturbance (landscape

scale) conditions as environmental space for all plots sampled,

irrespective of the occurrence of Oxalis. With this approach we

assumed a good coverage of the available environmental space

in the native range but it covers only a restricted portion of the

introduced range in the Mediterranean Basin. For the PCA we

used the same climate variables as in the global analysis.

However, we used those landscape variables selected by

collinearity analyses plus natural land cover as the disturbance

variables. The collinearity among variables does not affect the

results, and facilitates better distinction of the disturbance gra-

dient. We analysed shifts using both presence and abundance

data. For the abundance data, we adapted the method by repli-

cating plots according to their level of abundance (1 to 5). This

weights the species density by its abundance, such that areas of

the PCA where Oxalis shows higher abundance will proportion-

ally include higher species density.

Modelling shifts using GLMs

We identified how climate and disturbance (habitat and land-

scape scales) affected shifts in the abundance of Oxalis using

Bayesian models that allowed regression coefficients to vary

between the native and introduced ranges. The abundance of

Oxalis in the dominant habitats of each plot (n = 10,871), was

modelled using a binomial distribution considering climate (30″
resolution) and landscape variables that were not correlated for

both ranges (for details see Appendix S2). We corrected for the

potential sampling bias arising from the roadside collection of

some data by including the distance to roads as a covariate.

We also compared models that included only road sampling

data with models including all data. Because results were very

similar, we focus on results using all data (‘road only’ models in

Appendix S1).

We calculated several aggregate indices based on the model

coefficients to facilitate their interpretation. First, we calculated

the overall suitability of disturbed habitats in each range as the

sum of the coefficients of agricultural, transport network, urban

and ruderal habitats. Similarly, we calculated the overall suitabil-

ity of natural habitats for each range as the sum of the coeffi-

cients for coastal, forest, grasslands, river, rocky and shrubland

habitats. Finally, to quantify the overall importance of disturb-

ance variables at the landscape scale in each range we calculated

the sum of the absolute values of their coefficients.

We set apart a randomly selected 10% of plots for model

validation and calibrated the models with the remaining 90%.

Goodness of fit of the models was calculated using deviance

information criteria (DIC) (Spiegelhalter et al., 2002) for the

whole model and mean squared errors (predicted minus

observed) of the validation plots for each range. Models that

P. González-Moreno et al.

Global Ecology and Biogeography, © 2014 John Wiley & Sons Ltd4



minimized both values were considered to fit the data better. In

preliminary analyses, full models without quadratic terms were

always equivalent to more simple models (within 2–4 DIC).

Thus, we ran final models using all climate and landscape vari-

ables selected by collinearity analyses without quadratic terms.

We did not detect significant spatial autocorrelation in the resid-

uals of the models at bins of 0.1° (Moran’s index < 0.1). Final

models were run in OpenBUGS 3.2.1 (Lunn et al., 2009) until

convergence of the parameters was ensured (c. 25,000 iterations,

convergence assessed visually), after which the parameters were

calculated from another 25,000 iterations (code in Appendix S2).

Predicting shifts

To visually compare the distribution of Oxalis in native and

introduced ranges we made predictions of the abundance of the

species in southern Europe using GLMs calibrated with either

native or introduced data (reciprocal distribution modelling;

Medley, 2010). We used the posterior parameter values of the

best model to generate mean predictions at the central point of

1-km UTM grid resolution, irrespective of the habitat type. We

also identified non-analogous conditions to the calibrated data

based on the multivariate environmental similarity surfaces

(MESS) index (Elith et al., 2010) where models are extrapolating

and predictions should be interpreted cautiously (Fitzpatrick &

Hargrove, 2009).

RESULTS

Global climatic niche shift

The climatic space of the whole Mediterranean biome was sum-

marized by two PCA axes explained mainly by minimum tem-

perature (36.9%) and precipitation seasonality (32.2%) (Fig. S1

in Appendix S1). Using this climatic space we found that the

median of the distribution of Oxalis in the introduced range

moved towards a lower temperature and slightly stronger sea-

sonality relative to the native range (Fig. 2). More specifically,

the climatic niche of Oxalis expanded into areas with both

stronger and weaker precipitation seasonality, extending into

some areas outside the climatic envelope of the Mediterranean

biome (37.3% expansion). On the other hand, some small areas

with higher temperature and medium seasonality were only

occupied in the native range (3.1% unfilling). Taking into

account only the common environmental space between the

native and introduced range (overlap between black and grey

lines in Fig. 2), expansion and unfilling were reduced in both

cases to just 3.5% and 0% respectively.

Mediterranean Basin niche shift

Comparing niche shifts in an ordination space

The climatic space across all the sampled abundance plots was

summarized by two axes corresponding mainly to precipitation

seasonality (37.2%) and mean annual temperature (28.5%)

(Fig. S2 in Appendix S1). The median of the Oxalis distribution

shifted towards stronger seasonality and slightly lower tempera-

ture in the introduced range (Fig. 3a). The climatic niche of the

species was particularly expanded to areas with stronger precipi-

tation seasonality occurring in Malta (15% expansion). On the

other hand, some areas with weaker seasonality were only occu-

pied in the native range (68% unfilling). Taking into account the

common environmental space, there was no expansion and

unfilling was 10%. Results considering only presence data were

very similar but with lower percentages (4% unfilling in the

common space; Fig. S4 in Appendix S1). These results are very

similar to the global climatic niche shift but with higher rates.

The disturbance space at the landscape scale was summarized

by two axes corresponding to natural versus agricultural areas

(43.2%) and urban areas versus distance to roads (28.3%)

(Fig. S2 in Appendix S1). Using this space, we found a shift of

the median of the Oxalis distribution in the introduced range

Figure 2 Global climatic niche shift of Oxalis pes-caprae based
on a principal components analysis (PCA) of climate variables.
The light grey line delimits the entire range of conditions in the
native range of Oxalis while the black line delimits the conditions
in the introduced range (the whole Mediterranean biome without
considering South Africa). For both ranges, the continuous line
corresponds to the whole climatic space while the dashed line
indicates the 75th percentile. The overlapped space between grey
and black lines corresponds to the common environmental space
between ranges. Shaded areas represent the portion of these
conditions actually occupied by Oxalis: medium grey for niche
expansion (presence only in the introduced range), light grey for
niche unfilling (presence only in the native range) and dark grey
for the conditions that are occupied in both ranges. The
continuous black arrow shows the environmental distance
between the median of the distribution density for each range.
The dashed black arrow shows the environmental distance
between the median of the available climatic space in each range.
See Appendix S1 for detailed plots.
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towards more disturbed areas (Fig. 3b), but that corresponded

to only 0.9% of expansion to more disturbed areas. This expan-

sion occurred at a landscape configuration not available in the

native range, corresponding to areas of intensive agriculture in

eastern mainland Spain. Areas with the highest natural land

cover were only occupied in the native range (15% unfilling).

When considering the common disturbance space, this unfilling

was reduced to 8%. Results considering only presence data were

very similar, but with slightly lower percentages (6% unfilling in

the common space; Fig. S4 in Appendix S1).

Comparing niche shifts in a regression model

The final model showed rather low errors for the native range

compared with the introduced range (Table 1). Half of the cli-

matic variables showed similar associations with the abundance

of Oxalis in both ranges (Fig. 4). The abundance of Oxalis

increased at higher mean annual temperature and stronger pre-

cipitation seasonality in both ranges. Nevertheless, precipitation

in winter seems to be positively associated with abundance of

Oxalis only in the native range, whereas temperature seasonality

was negatively associated with abundance only in the introduced

range.

Proximity to roads and agricultural and urban land-cover

types were all positively associated with abundance of Oxalis in

both ranges (Fig. 4). Furthermore, proximity to roads, urban

cover and the human footprint index were all more strongly

associated with abundance of Oxalis in the introduced range

than in the native range (Fig. 4, Table S3 in Appendix S1). The

overall difference for disturbance variables at the landscape scale

was also significantly higher in the introduced range.

In the native range, abundance of Oxalis was rather similar

across habitats, although ruderal and transport network habitats

showed slightly higher suitability (Fig. 5). In contrast, habitat

suitability in the introduced range was significantly higher in

disturbed habitats than in natural habitats (Fig. 5, Table S4 in

Appendix S1). For several natural habitats, suitability was sig-

nificantly higher in the native range (i.e. forest, rocky and

shrubland), while differences were not significant for the

remaining habitats (Fig. 5). On the other hand, for half of the

disturbed habitats suitabilities were higher in the introduced

range (i.e. agricultural and urban) and the rest showed no sig-

nificant differences.

Predicting shifts

Predictions in the introduced range from models calibrated with

native range data showed a larger potential distribution for

Oxalis than models using only introduced range data (Fig. 6).

Figure 3 Shifts in the climatic and disturbance niche of Oxalis pes-caprae (abundance) between South Africa and the Mediterranean Basin
based on separate principal components analyses (PCAs) for climate variables and disturbance variables at the landscape scale. See legend
in Figure 2 and Appendix S1 for detailed plots.

Table 1 Mean and standard deviation (SD) of the squared errors
(SE; predicted minus observed) in the models explaining the
abundance of Oxalis (Mediterranean Basin niche shift analyses)
for the validation plots set apart (10%) for the native and
introduced ranges (rows) calibrated with data from the native
range or the introduced range (columns). In bold, best model
calibration for each range.

Model for

Calibrated with

Native range Introduced range

Mean SE SD SE Mean SE SD SE

Native range 0.67 1.67 5.78 6.35

Introduced range 2.64 4.17 1.48 2.55
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However, when considering only predictions for analogous

conditions the potential distribution based on native range data

was rather small (Fig. 6 & Fig. S7 in Appendix S1).

DISCUSSION

Estimating the strength of niche conservatism is extremely

important for predicting the spread of introduced species

(Alexander & Edwards, 2010; Petitpierre et al., 2012). Although

most studies of niche shifts consider only broad climatic niches,

additional factors such as habitat and disturbance may also

affect niche shifts for invasive species. For Oxalis we found

similar levels of climatic and disturbance niche shifts between

native and introduced ranges, mainly related to different envi-

ronmental availabilities between ranges and a time lag in the

invasion process. Clearly, features other than broad climatic

factors are also important for shaping species niches.

Climatic niche shifts

The observed niche shift of Oxalis towards stronger precipita-

tion seasonality and lower temperatures in the introduced range

is most likely a consequence of the availability of climatic con-

ditions in the introduced range that are not present in the native

range, rather than rapid evolution. The colder, more seasonal

climates in the Mediterranean are simply not available in South

Africa. When considering climates available in both ranges,

expansion and unfilling metrics were greatly reduced (< 10%),

on a par with percentages found for 86% of the Holarctic species

studied by Petitpierre et al. (2012). Nonetheless, the large expan-

sion observed when considering the whole climatic space sug-

gests that species might have significant plasticity in the niche

not expressed in the native range (Alexander & Edwards, 2010).

Similar patterns of expansion linked to high plasticity have been

found for species introduced to Australia, with c. 75% of species

studied experiencing novel biomes (Gallagher et al., 2010).

These findings have important consequences for analyses of

invasion risk because models that consider only the niche in the

native range could greatly underestimate the invasion potential

of non-native species (Hierro et al., 2009; Jiménez-Valverde

et al., 2011).

Half of the climate variables showed similar associations with

the abundance of Oxalis in its native and introduced ranges,

Figure 4 Posterior means (with Bayesian credible intervals) of the coefficients for climate and landscape variables at native (circles) and
introduced (triangles) ranges in the generalized linear model explaining the abundance of Oxalis pes-caprae. The ‘Overall’ coefficient is the
absolute sum of the four landscape coefficients. Filled symbols indicate that the 95% credible interval around the parameter mean values
did not include zero (i.e. a significant effect).

Figure 5 Posterior means (with credible intervals) of the
coefficients for habitat type (disturbance at local level) at native
(circles) and introduced (triangles) ranges in the generalized
linear model explaining the abundance of Oxalis pes-caprae. The
‘Overall’ coefficients are the sum of the disturbed and natural
habitats coefficients, respectively. Filled symbols indicate that the
95% credible interval around the difference between coefficients
of both ranges for each habitat did not include zero (i.e. a
significant difference).

Niche shifts in invasive species
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suggesting a constant sensitivity to climate across its whole

range. However, for the other half of the climate variables, the

association was only important in one of the ranges. For

example, temperature seasonality was only associated with

abundance of Oxalis in the introduced range. The negative asso-

ciation between temperature seasonality and abundance sug-

gests higher abundances close to coastal areas, raising two

possible mechanisms. On the one hand it could reflect the origi-

nal niche in the native range, as Oxalis occupies areas in the

native range with relatively weaker seasonality than in the intro-

duced range (Fig. 3). On the other hand, this pattern could be an

artefact of the coastal locations of historical introductions and

the insufficient time to spread further inland.

Precipitation in winter was only an important correlate of the

abundance of Oxalis in the native range. We had expected the

same association in the introduced range because the species is

a winter-growing geophyte (Ross et al., 2008). Two non-

exclusive factors could explain this pattern. First, the species

might be associated with artificial water sources in human-

altered areas in the introduced range (personal observation),

allowing the species to be less dependent on precipitation

regimes. Second, differences could be an artefact of the

collinearity between precipitation in winter and precipitation

seasonality which occurs only in the introduced range. The dif-

ferent sensitivity of the abundance of Oxalis to climate variables

in the two ranges highlights the importance of understanding

the biology of invasive species in both their native and

introduced ranges rather than developing ‘blind’ models from

the ‘best’ set of predictors.

Disturbance niche shifts

Oxalis prefers high levels of disturbance in both its native and

introduced ranges. However, we found a clear shift towards

higher levels of disturbance in the introduced range, both at

landscape and local scales. In other words, Oxalis occupies more

natural areas in the native range that remain unoccupied in the

introduced range. Similar patterns have been described for other

invasive species. For instance, Rhododendron ponticum L. occurs

in well-conserved forests in its native range but it is highly

invasive in the British Isles where it is especially competitive in

disturbed areas (Cross, 1975). Such evidence supports the

hypothesis that invasive species may be associated with higher

levels of disturbance, especially at the beginning of the invasion

process (Hobbs & Huenneke, 1992; Dietz & Edwards, 2006).

This finding implies that non-native species such as Oxalis could

invade more natural habitats as the invasion unfolds (Dietz &

Edwards, 2006). This possibility is further supported by the

ecology of Oxalis in its introduced range. Due to the lack of local

floral morph diversity in the introduced range, its principal

means of reproduction is by bulbils (Castro et al., 2007). This

vegetative reproduction could partially explain the shift towards

higher levels of disturbance, because disturbance and rapid

clonal spread are generally associated (Coffroth & Lasker, 1998).

Figure 6 Prediction maps of Oxalis pes-caprae abundance (from absent = 0 to dominant = 5). Upper part: predictions with the generalized
linear model (GLM) calibrated only with data from the introduced range. Lower part: predictions with the GLM calibrated only with data
from the native range. The dashed line delimits analogous conditions (positive values of the MESS index) in relation to the calibrated data.
A surface crossed with lines indicates non-analogous conditions where models are extrapolating at least in one variable.
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However, the recent discovery of populations with higher

floral morph diversity (Castro et al., 2013) and the partial break-

down in the morph-incompatibility system in Portugal (Costa

et al., 2014) suggest that the species may be able to take advan-

tage of sexual reproduction and thereby adapt to more natural

conditions.

Other factors intrinsic to specific habitats could affect changes

in abundance between native and introduced ranges. For

instance, Oxalis is more abundant in agricultural habitats in the

introduced range, probably due to different crop systems. In

southern Europe, the reduction in profitability in modern agri-

culture (especially olive groves, which are not common in South

Africa) promotes systems with lower inputs and weed control,

allowing higher abundance of Oxalis compared with similar

habitats in South Africa. Biotic interactions could also limit the

spread of Oxalis into natural habitats. For instance, Oxalis is a

poor competitor against native grasses (Sala et al., 2007). In

contrast, Vilà et al. (2006) found similar rates of predation and

germination of Oxalis bulbs among ruderal, shrubland and old-

field habitats. Although we lack knowledge about its success in

later stages of the recruitment dynamics (Vilà et al., 2006), its

‘invasive’ character in the native range suggests that the species

might be able to expand into more natural habitats, profiting

from local disturbances (e.g. forest gaps). This potential expan-

sion could alter succession dynamics in natural habitats, thereby

magnifying ecological impacts in the introduced range.

Understanding and modelling niche shifts

Climatic niche shifts are commonly tested using an aggregation

of climate variables in an ordination space (e.g. Gallagher et al.,

2010; Petitpierre et al., 2012). Although it is possible to reduce

bias in sampling and frequency of environmental conditions by

applying smoothing functions (Broennimann et al., 2012), this

method still requires a priori knowledge of which variables are

most important for determining the range limits of the species.

This is a major caveat with this method, because sensitivities to

different climatic variables are likely to vary among species.

Furthermore we found slightly higher shifts when considering

abundance data than with occurrence data, which could par-

tially explain the low shift values found in other studies.

Another frequently used approach is reciprocal distribution

modelling in which the potential distribution of a species in the

introduced range is predicted from its actual occurrence in the

native range and vice versa (Fitzpatrick et al., 2007; Medley,

2010). This technique allows predictions to be mapped in geo-

graphical space and accepts categorical variables. Using this

approach we have complemented the ordination method by

identifying the variables that characterize Oxalis’ niche and

compared the conservatism in the association of single variables

with the species’ abundance. Despite its potential, it is important

to consider possible bias arising from the selection of the vari-

ables (Strubbe et al., 2013) and uncertainties such as that asso-

ciated with extrapolation into non-analogous conditions

(Fitzpatrick & Hargrove, 2009). Therefore, for shift analyses we

advocate a careful selection of biologically relevant variables, the

use of both occurrence and abundance data and the combined

implementation of ordination and distribution modelling

approaches.

The relative merits of quantifying absolute shifts in environ-

mental conditions between ranges, versus shifts within those

conditions available in both ranges is currently under debate

(Petitpierre et al., 2012). Limiting analyses to conditions that are

common to both ranges allows shifts to be interpreted as ‘true’

niche shifts versus simply the filling of a pre-adapted niche

(Petitpierre et al., 2012). However, for invasive species this

approach is likely to underestimate invasion risk because intro-

duced ranges often contain environmental conditions that are

not available in the native range. Further, our study highlights

the importance of defining species niches more broadly than

simply by climate because other factors may have important

effects on niche shifts (Wiens et al., 2010). For Oxalis, consider-

ing only common climatic conditions might underestimate its

potential to invade colder, more seasonal and more natural

areas. Evidence is mounting that estimations of invasion risk

should not assume niche conservatism (Fitzpatrick et al., 2007;

Gallagher et al., 2010) but rather incorporate multiple niche

dimensions in both native and introduced ranges

(Broennimann & Guisan, 2008; Jiménez-Valverde et al., 2011).

Thus, while invasive species offer a unique chance to test basic

biogeographic questions about niche shifts, understanding these

basic processes also has important consequences for manage-

ment of biodiversity.
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